A Relative Approach to Hierarchical Clustering
نویسندگان
چکیده
This paper presents a new approach to agglomerative hierarchical clustering. Classical hierarchical clustering algorithms are based on metrics which only consider the absolute distance between two clusters, merging the pair of clusters with highest absolute similarity. We propose a relative dissimilarity measure, which considers not only the distance between a pair of clusters, but also how distant are they from the rest of the clusters. It defines for each cluster its relative nearest cluster respect to the whole data set, instead of its usual absolute nearest cluster. We have named the agglomerative hierarchical scheme with this relative dissimilarity measure as Relative Hierarchical Clustering (RHC). The performance of RHC is compared with the classical approach with different intercluster distances by using three data sets.
منابع مشابه
به کارگیری روشهای خوشهبندی در ریزآرایه DNA
Background: Microarray DNA technology has paved the way for investigators to expressed thousands of genes in a short time. Analysis of this big amount of raw data includes normalization, clustering and classification. The present study surveys the application of clustering technique in microarray DNA analysis. Materials and methods: We analyzed data of Van’t Veer et al study dealing with BRCA1...
متن کاملDetermination of the Best Hierarchical Clustering Method for Regional Analysis of Base Flow Index in Kerman Province Catchments
The lack of complete coverage of hydrological data forces hydrologists to use the homogenization methods in regional analysis. In this research, in order to choose the best Hierarchical clustering method for regional analysis, base flow and related index were extracted from daily stream flow data using two parameter recursive digital filters in 43 hydrometric stations of the Kerman province. Ph...
متن کاملA Clustering Based Location-allocation Problem Considering Transportation Costs and Statistical Properties (RESEARCH NOTE)
Cluster analysis is a useful technique in multivariate statistical analysis. Different types of hierarchical cluster analysis and K-means have been used for data analysis in previous studies. However, the K-means algorithm can be improved using some metaheuristics algorithms. In this study, we propose simulated annealing based algorithm for K-means in the clustering analysis which we refer it a...
متن کاملA New Method for Duplicate Detection Using Hierarchical Clustering of Records
Accuracy and validity of data are prerequisites of appropriate operations of any software system. Always there is possibility of occurring errors in data due to human and system faults. One of these errors is existence of duplicate records in data sources. Duplicate records refer to the same real world entity. There must be one of them in a data source, but for some reasons like aggregation of ...
متن کاملGraph Clustering by Hierarchical Singular Value Decomposition with Selectable Range for Number of Clusters Members
Graphs have so many applications in real world problems. When we deal with huge volume of data, analyzing data is difficult or sometimes impossible. In big data problems, clustering data is a useful tool for data analysis. Singular value decomposition(SVD) is one of the best algorithms for clustering graph but we do not have any choice to select the number of clusters and the number of members ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2000